The Monodromy Conjecture for Hyperplane Arrangements
نویسنده
چکیده
The Monodromy Conjecture asserts that if c is a pole of the local topological zeta function of a hypersurface, then exp(2πic) is an eigenvalue of the monodromy on the cohomology of the Milnor fiber. A stronger version of the conjecture asserts that every such c is a root of the Bernstein-Sato polynomial of the hypersurface. In this note we prove the weak version of the conjecture for hyperplane arrangements. Furthermore, we reduce the strong version to the following conjecture: −n/d is always a root of the Bernstein-Sato polynomial of an indecomposable essential central hyperplane arrangement of d hyperplanes in C n.
منابع مشابه
Monodromy Filtration and Positivity
We study Deligne’s conjecture on the monodromy weight filtration on the nearby cycles in the mixed characteristic case, and reduce it to the nondegeneracy of certain pairings in the semistable case. We also prove a related conjecture of Rapoport and Zink which uses only the image of the Cech restriction morphism, if Deligne’s conjecture holds for a general hyperplane section. In general we show...
متن کاملDescent algebras, hyperplane arrangements, and shuffling cards. To appear
This note establishes a connection between Solomon’s descent algebras and the theory of hyperplane arrangements. It is shown that card-shuffling measures on Coxeter groups, originally defined in terms of descent algebras, have an elegant combinatorial description in terms of random walk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved.
متن کاملDescent Algebras, Hyperplane Arrangements, and Shuuing Cards
This note establishes a connection between Solomon's descent algebras and the theory of hyperplane arrangements. It is shown that card-shu ing measures on Coxeter groups, originally de ned in terms of descent algebras, have an elegant combinatorial description in terms of randomwalk on the chambers of hyperplane arrangements. As a corollary, a positivity conjecture of Fulman is proved. 2
متن کاملGeneralized Thomas hyperplane sections and relations between vanishing cycles
R. Thomas (with a remark of B. Totaro) proved that the Hodge conjecture is essentially equivalent to the existence of a hyperplane section, called a generalized Thomas hyperplane section, such that the restriction to it of a given primitive Hodge class does not vanish. We study the relations between the vanishing cycles in the cohomology of a general fiber, and show that each relation between t...
متن کاملBernstein-sato Polynomials of Hyperplane Arrangements
Using a generalization of Malgrange’s formula and a solution of Aomoto’s conjecture due to Esnault, Schechtman and Viehweg, we calculate the Bernstein-Sato polynomial (i.e. b-function) of a hyperplane arrangement with a reduced equation, and show that its roots are greater than−2 and the multiplicity of −1 coincides with the (effective) dimension. As a corollary we get a new proof of Walther’s ...
متن کامل